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ABSTRACT: 
 
The Support Vector Machine is a theoretically superior machine learning methodology with great results in classification of high-
dimensional datasets and has been found competitive with the best machine learning algorithms. In the past, SVMs have been tested 
and evaluated only as pixel-based image classifiers. Moving from pixel-based techniques towards object-based representation, the 
dimensions of remote sensing imagery feature space increases significantly. This results increasing complexity of the classification 
process, and causes problems to traditional sample-based classification schemes. The objective of this study was to evaluate SVMs 
for effectiveness and prospects for object-based image classification as a modern computational intelligence method. An SVM 
approach for multi-class classification was followed, based on primitive image objects produces by a multi-resolution segmentation 
algorithm. The segmentation algorithm produced primitive objects of variable sizes and shapes. Then, a feature selection step took 
place in order to provide the features for classification which involved spectral, texture and shape information. Contextual 
information was not used. Following the feature selection step, a module integrating an SVM classifier and the segmentation 
algorithm was developed in C++ and based on XML technology for feature representation. For training the SVM, sample image 
objects, derived from the segmentation procedure were used. The SVM procedure produced the final object classification results 
which were compared to the Nearest Neighbor classifier results, of the eCognition software, and were found satisfactory. The SVM 
approach seems very promising for Object Based Image Analysis and future work will focus on the integration SVM classifiers with 
rule-based classifiers. 
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1. INTRODUCTION 

1.1 Knowledge-based image classification and Object 
Oriented Image Analysis 

In recent years, research has progressed in computer vision 
methods applied to remotely sensed images such as 
segmentation, object oriented and knowledge-based methods 
for classification of high-resolution imagery (Argialas and 
Harlow 1990, Kanellopoulos et al. 1997). In Computer Vision, 
image analysis is considered in three levels: low, medium and 
high (Argialas and Harlow 1990). Such approaches were 
usually implemented in separate software environments since 
low and medium level algorithms are procedural in nature, 
while high level is inferential and thus for the first one needs 
procedural languages while for the second an expert system 
environment is more appropriate.  
New approaches have been developed, recently in the field of 
Remote Sensing. Some of them were based on knowledge-
based techniques in order to take advantage of the expert 
knowledge derived from human photo-interpreters (Argialas 
and Goudoula 2003, Yoo et al 2002, Yooa et al 2005). In 
particular within an Expert System environment, the 
classification step has been implemented through logic rules 
and heuristics, operating on classes and features, which were 
implemented by the user through an object-oriented 
representation (De Moraes 2004, Moller-Jensen 1997). This 
object-oriented representation was mainly based on the image 

semantics and the explicit knowledge of the human expert. In 
order to classify each element of the image into the appropriate 
class, the knowledge based expert system represented the 
definitions of the classes through rules and heuristics, which an 
expert explicitly declares and develops within the system. As a 
result, more complex methods for image classification have 
been implemented and many more image features can be used 
for the classification step (Smits and Annoni 1999, 
Kanellopoulos et al. 1997). 
Very recently a new methodology called Object Oriented Image 
Analysis was introduced, integrating low-level, knowledge-free 
segmentation with high-level, knowledge-based fuzzy 
classification methods. This new methodology was 
implemented through a commercial software, eCognition, 
which incorporated an object-oriented environment for the 
classification of satellite imagery (Baatz and Shape 2000, Benz 
et al. 2004). 
 
1.2 Computational Intelligence methods in Remote Sensing 

Other fields of Artificial Intelligence have also been developed 
such as Computational Intelligence and Machine Learning 
involving Neural Networks, Fuzzy Systems, Genetic 
Algorithms, Intelligent Agents and Support Vector Machines 
(Negnevitsky 2005). Machine learning is an integral part of 
Pattern Recognition, and in particular classification 
(Theodoridis and Koutroumbas 2003). Given that in the past, 
digital remote sensing used pattern recognition techniques for 



 

classification purposes, modern machine learning techniques 
have been also implemented for remote sensing applications 
and achieved very good classification results (Binaghi et al 
2003, Fang and Liang 2003, Theodoridis and Koutroumbas 
2003, Huang et al 2002, Brown et al 2000, Foody and Mathur 
2004). 
The Support Vector Machine (SVM) is a theoretically superior 
machine learning methodology with great results in the 
classification of high-dimensional datasets and has been found 
competitive with the best machine learning algorithms. In the 
past, SVMs were tested and evaluated only as pixel based 
image classifiers with very good results (Huang et al 2002, 
Brown et al 2000, Foody and Mathur 2004, Gualtieri and 
Cromp 1999, Melgani and Bruzzone 2004). 
Furthermore, for remote sensing data it has been shown that 
Support Vector Machines have great potential, especially for 
hyperspectral data, due to their high-dimensionality (Gualtieri 
and Cromp 1999, Melgani and  Bruzzone 2004). In recent 
studies, Support Vector Machines were compared to other 
classification methods, such as Neural Networks, Nearest 
Neighbor, Maximum Likelihood and Decision Tree classifiers 
for remote sensing imagery and have surpassed all of them in 
robustness and accuracy (Huang et al 2002, Foody and Mathur 
2004). 
 
1.3 Research Objectives 

The objective of this study was to evaluate SVMs for their 
effectiveness and prospects for object-based image 
classification.  
A secondary objective was to evaluate the accuracy of SVM 
compared to simpler and widely used classification techniques 
such as Nearest Neighbor. Also, the computational efficiency 
and training size requirements of SVMs were set for 
consideration.  
 

2. METHODOLOGY 

2.1 Multi-scale Segmentation 

Image segmentation is an integral part of Object-Based Image 
Analysis methodology (Benz et al 2004). The digital image is 
no longer considered as a grid of pixels, but as a group of 
primitives and homogeneous regions, called primitive image 
objects. The object oriented representation provides to the 
classification process information that could not be derived 
from single pixels such as context and shape information. These 
are very important factors to photo-interpretation and image 
understanding (Lillesand and Kiefer 1987, Sonka et al 1998, 
Biederman 1985). Objects can be more intelligent than pixels, 
in a sense of knowing their “neighbours” and the spatial or 
spectral relations with and among them.  
In order to perform object based classification, a segmentation 
algorithm is needed to provide knowledge-free primitive image 
objects. When a photo interpretation task is carried out by an 
expert, the scale of imagery is specified by the nature of image 
semantics to be recognized (Lillesand and Kiefer 1987). During 
the higher level image classification steps, there is a need to 
have primitive objects of different sizes and preferably on 
different scales of abstraction derived from the sameimagery 
(Tzotsos and Argialas 2006, Baatz and Shape 2000, Benz et al. 
2004). That is the main reason why for remote sensing image 
classification, a multi-resolution segmentation approach is 
needed. 
For this research effort the MSEG multi-scale segmentation 
algorithm was used (Tzotsos and Argialas 2006). The main 

reason for this choice was that it has an open architecture to 
implement new features in C++. For evaluation purposes, the 
Multiresolution Segmentation algorithm in eCognition was also 
used (Baatz and Shape 2000). 
MSEG can be described as a region merging procedure. The 
first primitive object representation is the single image pixel. 
Through iterative pairwise object fusions, which are made at 
several iterations called passes, the final segmentation is 
achieved. The criterion for object merging is a homogeneity 
cost measure, defined as object heterogeneity, and computed 
based on spectral, texture and shape features for each possible 
object merge. The heterogeneity is then compared to a user 
defined threshold, called scale parameter, to determine the 
decision of the merge. MSEG also offers a multi-resolution 
algorithm which performs segmentations at several levels and at 
the same time provides automatic topology of objects within 
each level and among levels (Tzotsos and Argialas 2006). 
 
2.2 Support Vector Machines 

Recently, particular attention has been dedicated to Support 
Vector Machines as a classification method. SVMs have often 
been found to provide better classification results that other 
widely used pattern recognition methods, such as the maximum 
likelihood and neural network classifiers (Melgani and  
Bruzzone 2004, Theodoridis and Koutroumbas 2003). Thus, 
SVMs are very attractive for the classification of remotely 
sensed data. 
The SVM approach seeks to find the optimal separating 
hyperplane between classes by focusing on the training cases 
that are placed at the edge of the class descriptors. These 
training cases are called support vectors. Training cases other 
than support vectors are discarded. This way, not only is an 
optimal hyperplane fitted, but also less training samples are 
effectively used; thus high classification accuracy is achieved 
with small training sets (Mercier and Lennon 2003). This 
feature is very advantageous, especially for remote sensing 
datasets and more specifically for Object-based Image Analysis, 
where object samples tend to be less in number than in pixel- 
based approaches. 
A complete formulation of Support Vector Machines can be 
found at a number of publications (Vapnik 1995, 1998, Cortes 
and Vapnik 1995, Theodoridis and Koutroumbas 2003). Here, 
the basic principles will be presented and then their 
implementation and application to Object Based Image 
Analysis will be evaluated. 
Let us consider a supervised binary classification problem. If 
the training data are represented by {xi, yi}, i = 1, 2, …, N, and 
yi ∈  {-1, +1}, where N is the number of training samples, 
yi=+1 for class ω1 and yi=-1 for class ω2. Suppose the two 
classes are linearly separable. This means that it is possible to 
find at least one hyperplane defined by a vector w with a bias 
w0, which can separate the classes without error: 

0)( 0 =+⋅= wxwxf   (1) 
To find such a hyperplane, w and w0 should be estimated in a 
way that 1)( 0 +≥+⋅ wxwy ii  for yi = + 1 (class ω1) and 

1)( 0 −≤+⋅ wxwy ii  for yi = - 1 (class ω2). These two, can 
be combined to provide equation 2: 

01)( 0 ≥−+⋅ wxwy ii   (2) 
 
Many hyperplanes could be fitted to separate the two classes 
but there is only one optimal hyperplane that is expected to 
generalize better than other hyperplanes (Figure 1).  



 

The goal is to search for the hyperplane that leaves the 
maximum margin between classes. To be able to find the 
optimal hyperplane, the support vectors must be defined. The 
support vectors lie on two hyperplanes which are parallel to the 
optimal and are given by: 

10 ±=+⋅ wxw i   (3) 
If a simple rescale of the hyperplane parameters w and w0 takes 

place, the margin can be expressed as 
w
2

. The optimal 

hyperplane can be found by solving the following optimization 
problem: 
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Subject to 01)( 0 ≥−+⋅ wxwy ii  i = 0, 1, … N 
 
Using a Lagrangian formulation, the above problem can be 
translated to: 
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where iλ   are the Lagrange multipliers. 
Under this formulation, the optimal hyperplane discriminant 
function becomes: 
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where S is a subset of training samples that correspond to non-
zero Lagrange multipliers. These training samples are called 
support vectors. 
In most cases, classes are not linearly separable, and the 
constrain of equation 2 cannot be satisfied. In order to handle 
such cases, a cost function can be formulated to combine 
maximization of margin and minimization of error criteria, 
using a set of variables called slack variables ξ (Figure 1). This 
cost function is defined as: 
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To generalize the above method to non-linear discriminant 
functions, the Support Vector Machine maps the input vector x 
into a high-dimensional feature space and then constructs the 
optimal separating hyperplane in that space. One would 
consider that mapping into a high dimensional feature space 
would add extra complexity to the problem. But, according to 
the Mercer’s theorem (Vapnik 1998, Theodoridis and 
Koutroumbas 2003), the inner product of the vectors in the 
mapping space, can be expressed as a function of the inner 
products of the corresponding vectors in the original space. 
 

 
Figure 1:  Left: The case of linear separable classes. Right: The 
case of non linear separable classes. ξ measures the error of the 
hyperplane fitting. (source: Mercier and Lennon 2003) 
 
 
The inner product operation has an equivalent representation: 

),()()( zxzx Κ=ΦΦ    (8) 
where K(x,z)  is called a kernel function. If a kernel function K 
can be found, this function can be used for training without 
knowing the explicit form of Φ .   
The dual optimization problem is now formed as: 
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The resulting classifier becomes: 
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2.3 SVM Multi-class Classification 

The SVM method was designed to be applied only for two class 
problems. For applying SVM to multi-class classifications, two 
main approaches have been suggested. The basic idea is to 
reduce the multi-class to a set of binary problems so that the 
SVM approach can be used. 
The first approach is called “one against all”. In this approach, a 
set of binary classifiers is trained to be able to separate each 
class from all others. Then each data object is classified to the 
class for which the largest decision value was determined (Hsu 
and Lin 2002). This method trains N SVMs (where N is the 
number of classes) and there are N decision functions. Although 
it is a fast method, it suffers from errors caused by marginally 
imbalanced training sets. Another approach was recently 
introduced (Hsu and Lin 2002), which is similar to the “one 
against all” method, but uses one optimization problem to 
obtain the N decision functions (equation 10). Reducing the 
classification to one optimization problem may require less 
support vectors than a multi-class classification based on many 
binary SVMs. 
The second approach is called “one against one”. In this, a 
series of classifiers is applied to each pair of classes, with the 
most commonly computed class kept for each object. Then a 
max-win operator is used to determine to which class the object 
will be finally assigned. The application of this method requires 
N(N-1)/2 machines to be applied. Even if this method is more 
computationally demanding than the “one against all” method, 
it has been shown that it can be more suitable for multi-class 



 

classification problems (Hsu and Lin 2002), thus it was selected 
for SVM object-based image classification. 
 
2.4 Implementation 

In order to apply the SVM methodology for Object-Based 
Image Analysis, it was necessary to perform a segmentation of 
the image. The MSEG algorithm was selected to perform 
segmentation at multiple scales (Tzotsos and Argialas 2006) 
and to produce primitive image objects to be used for SVM 
classification.  
For the primitive objects, to be usable by a classification 
algorithm, there was a need to implement an interface between 
image objects and the classifier. This interface should include 
an object feature export mechanism and also a way to provide 
training data for the classifier. 
An extra module was implemented into the MSEG core library 
to add the functionality of selecting sample objects. Because a 
comparison was to be made with the Nearest Neighbor 
classifier used in eCognition, a TTA Mask (eCognition user 
guide 2005) import module was also implemented, so that the 
training object selection process would be as transparent and 
objective as possible. 
For the object feature interface, the XML language was 
selected, so that open standards are followed. An XML 
representation was implemented for the segmentation level 
class, to provide the classifier all the information about the 
segmentation procedure that was performed to produce the 
object primitives. In Figure 3, a typical XML level file is 
presented. 
A widely used SVM library called LIBSVM (Chang and Lin 
2001) was then modified to be able to handle XML level files 
as well as training samples from the MSEG algorithm. A 
classifier module was then implemented as a modified version 
of LIBSVM. 
The proposed Object-based Image Analysis system worked in 
the following way: A segmentation procedure was carried out 
with scale, color and shape parameters. The properties of the 
primitive objects were then computed and exported to XML 
format (Figure 2). A TTA Mask file along with its attribute 
table was imported to the system and training object samples 
were defined. A training set of feature vectors was exported 
from the MSEG algorithm and was used for training the SVM 
module. 
The SVM module is capable of using 4 types of kernels for 
training and classification: 

Linear:   j
T
iji xxxx =Κ )(  

Polynomial:   0,)()( >+⋅=Κ γγ d
j

T
iji rxxxx  

Radial Basis Function (RBF): 

 0),exp()(
2
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Sigmoid: )tanh()( rxxxx j
T
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where γ, r and d are kernel parameters. 
 
All the above kernels follow Mercer’s theorem and can be used 
for mapping the feature space into a higher dimensional space 
to find an optimal separating hyperplane. In literature, there 
have been many comparison studies between the most common 
kernels (Mercier and Lennon 2003, Huang et al 2002). For 
pixel-based classification of remotely sensed data, it has been 
shown that local kernels such as RBF can be very effective and 
accurate. Also, the linear kernel is a special case of the RBF 

kernel, with specific parameters (Hsu and Lin 2002). Based on 
the above, for the current study only RBF kernels were used.  
For the training of the SVM classifier, the error parameter C 
(equation 7) and the kernel parameter γ had to be obtained. In 
order to find the optimal parameters for the RBF kernel 
function a cross-validation procedure was followed. 
 

 
  
Figure 2: XML representation of a segmentation level. Image 
object properties are included to be used by a classifier. Here 
only few (mean band value and standard deviation) of the 
available properties were used. 
 
First the training set was scaled to the range of [-1, +1] to avoid 
features in greater numerical ranges dominating those in smaller 
ranges (Negnevitsky 2005). Then, the training set was divided 
to many smaller sets of equal size. Sequentially each subset was 
tested using the classifier trained by the remaining subsets. This 
way each image object is predicted once during the above 
process. The overall accuracy of the cross-validation is the 
percentage of correctly classified image objects. 
After the cross-validation delivered the optimal parameters for 
the SVM classifier, the training set was used to train the SVM. 
Then the classifier was supplied with all image primitive 
objects so to derive the final object based classification. The 
output of the above procedure was a classification map as well 
as an updated XML representation of the segmentation level.  
 

3. DISCUSSION OF RESULTS 

For the evaluation of the developed approach, a Landsat TM 
image was used. For comparison purposes, an object-based 
classification of the same image was performed in eCognition. 
The training samples in both cases were the same (a TTA mask 
file) and were obtained by the eCognition user guide (2005) for 
objective evaluation. The original Landsat TM image and the 
training samples are presented in Figure 3. A reference dataset 
was also derived by photo-interpretation and was used to 
compute confusion matrices (Figure 4). 
 



 

  
 
Figure 3: Left: the original Landsat TM image (source: 
eCognition User Guide 2005). Right: The training set of class 
samples (blue=Water, red=Impervious, green=Woodland and 
yellow=Grassland). 
 

 

 
 
Figure 4: Left: The cross-validation plot diagram for selecting 
the optimal values of C and γ for SVM training. Right: The 
ground-truth dataset used to evaluate results 
 
First, the training samples were projected upon small primitive 
objects that were derived by eCognition with scale parameter 
10 and by MSEG with scale parameter 100. Scale parameters 
are compatible between these segmentation algorithms as they 
are identical internally (Tzotsos and Argialas 2006, eCognition 
user guide 2005). For the export of training samples, the 
minimum overlap for each sample object was set to 50%. The 
overall accuracy of the Nearest Neighbor (NN) method, based 
on the reference dataset was 85.6%. A cross-validation 
procedure was followed to provide the best C and γ parameters 
for the SVM classifier. The results of cross-validation are 
shown in Figure 4. The overall accuracy of the object-based 
SVM classification was 90.6% (Figure 5, Tables 1 and 2). 
 

  
 
Figure 5: Left: eCognition classification result with Nearest 
Neighbor. Right: MSEG classification result with SVM. 
Training sample overlap with objects set to 50%. 
 
 
 
 

 Woodland Grassland Impervious Water 
Woodland 17922 3381 280 0 
Grassland 2578 12854 195 0 
Impervious 139 770 8539 0 
Water 80 0 0 4740 
 
Table 1: Nearest Neighbor confusion matrix. The overall 
accuracy was 85.6% 
 
 Woodland Grassland Impervious Water 
Woodland 17846 2088 45 740 
Grassland 767 15937 210 91 
Impervious 231 215 8305 263 
Water 180 13 10 4537 
 
Table 2: SVM confusion matrix. The overall accuracy was 
90.6% 
 

  
 
Figure 6: Left: eCognition classification result with Nearest 
Neighbor. Right: MSEG classification result with SVM. In both 
classifications, errors have been introduced to the training sets 
for generalization evaluation. 
 
 Woodland Grassland Impervious Water 
Woodland 16080 1470 0 0 
Grassland 2195 13891 195 0 
Impervious 899 314 8605 0 
Water 1545 1330 214 4740 
 
Table 3: Nearest Neighbor confusion matrix. The overall 
accuracy was 84.1% 
 
Then, in order to test the generalization ability of both 
classifiers, an error was introduced into the training samples, in 
the form of not using a minimum overlap restriction for sample 
object selection. This way, more training objects were selected 
with errors derived from the segmentation procedures. An 
interesting observation was that the SVM behaved better than 
the NN to the second training set and provided better 
classification results (Tables 3 and 4) giving an overall 
accuracy of 86.0% against 84.1% for the NN. Both 
classification results are presented in Figure 6. 
 
 Woodland Grassland Impervious Water 
Woodland 16816 3458 207 238 
Grassland 1262 15506 178 59 
Impervious 249 325 8315 125 
Water 349 755 1 3635 
 
Table 4: SVM confusion matrix. The overall accuracy was 
86.0% 
 



 

4. CONCLUSIONS AND FUTURE WORK 

Overall, the SVM classification approach was found very 
promising for Object-Based Image Analysis. It has been shown 
that it can produce comparable or even better results than the 
Nearest Neighbor for supervised classification. 
The computational efficiency of SVM was great, with only a 
few minutes of runtime necessary for training. This was 
theoretically predicted but also, the implementation in C++ is 
extremely fast. However, very large remote sensing datasets 
were not tested. 
A very good feature of SVMs is that only a small training set is 
needed to provide very good results, because only the support 
vectors are of importance during training. 
Future work will include comparison of many SVM kernels for 
Object oriented image classification. Also, an integration of 
SVM classifiers with rule-based classifiers will be implemented 
for context-based classification. 
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